Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 1, 2027
- 
            Free, publicly-accessible full text available March 1, 2026
- 
            Multicomponent refractory alloys have the potential to operate in high-temperature environments. Alloys with heterogeneous/composite microstructure exhibit an optimal combination of high strength and ductility. The present work generates designed compositions using high-throughput computational and machine-learning (ML) models based on elements Mo-Nb-Ti-V-W-Zr manufactured utilizing vacuum arc melting. The experimentally observed phases were consistent with CALPHAD and Scheil simulations. ML models were used to predict the room temperature mechanical properties of the alloy and were validated with experimental mechanical data obtained from the three-point bending and compression tests. This work collectively showcases a data-driven, inverse design methodology that can effectively identify new promising multicomponent refractory alloys.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Maintaining a full workforce is critical to the operational efficiency of ports, which are key to the functioning of global maritime transportation systems, as well as to the larger logistics systems and the industries they support. A shortage of skilled workers, or extended, large-scale, absenteeism at one or more ports can affect cargohandling operations, competitiveness, and even the efficiency of international trade. Through numerical experiments, we study (i) whether the effects of low-level workforce shortages can be ‘absorbed’ without loss of efficiency; (ii) the level at which shortages in a region can impact another region, or the performance of the wider maritime system. To test this, we investigate the ports used by the M2 shipping alliance of Maersk Line and Mediterranean Shipping Company. The analysis is supported by advanced mathematical modeling and algorithmic procedures. Findings include that low- and even mid-level network-wide worker shortages can be absorbed, but at a greater cost to shippers. Moreover, when a worker shortage arises in some regions of the world, the impacts in other regions can be very significant.more » « less
- 
            Maintaining a full workforce is critical to the operational efficiency of ports, which are key to the functioning of global maritime transportation systems, as well as to the larger logistics systems and the industries they support. A shortage of skilled workers, or extended, large-scale, absenteeism at one or more ports can affect cargohandling operations, competitiveness and even the efficiency of international trade. Through numerical experiments, we study (i) whether the effects of low-level workforce shortages can be ‘absorbed’ without loss of efficiency; (ii) the level at which shortages in a region can impact another region, or the performance of the wider maritime system. To test this, we investigate the ports used by the M2 shipping alliance of Maersk Line and Mediterranean Shipping Company (MSC). The analysis is supported by advanced mathematical modeling and algorithmic procedures. Findings include that low- and even mid-level network-wide worker shortages can be absorbed, but at a greater cost to shippers. Moreover, when a worker shortage arises in some regions of the world, the impacts in other regions can be very significant.more » « less
- 
            Abstract To fulfill the demands of more bandwidth in 5G and 6G communication technology, new dielectric substrates that can be co‐fired into packages and devices that have low dielectric loss and improved thermal conductivity are desired. The motivation for this study is to design composites with low dielectric loss (tan δ) and high thermal conductivity (κ), while still limiting the electrical conductivity, for microwave applications involving high power and high frequency. This work describes the fabrication of high‐density electroceramic composites with a model dielectric material for cold sintering, namely sodium molybdate (Na2Mo2O7), and fillers with higher thermal conductivity such as hexagonal boron nitride. The physical properties of the composites were characterized as a function of filler vol.%, temperature, and frequency. Understanding the variation in measured properties is achieved through analyzing the respective transport mechanisms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available